Telegram Group & Telegram Channel
🍏Иллюзия мышления: понимание сильных и слабых сторон моделей рассуждения через призму сложности задач

Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.

📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями

И всё это — с усложнением.

💥 Результаты:

🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.

🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.

🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.

🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.

🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.

🧠 Почему LLM не справляются с Ханойскими башнаями при большом числе дисков

Модели вроде Sonnet 3.7, DeepSeek R1 и o3-mini не могут правильно решать башни Ханоя, если дисков больше 13 — и вот почему:

📏 Немного математики:

• Чтобы решить башни Ханоя, нужно минимум 2ⁿ − 1 ходов
• Один ход — это примерно 10 токенов (формат: «переместить диск X с A на B»)
• А значит, для 15 дисков нужно ~**327,670 токенов** только на вывод шагов


🧱 Лимиты моделей:

| Модель | Лимит токенов | Макс. число дисков (без размышлений) |
|--------------|----------------|---------------------------------------|
| DeepSeek R1 | 64k | 12
| o3-mini | 100k | 13
| Sonnet 3.7 | 128k | 13

И это без учёта reasoning (внутренних размышлений), которые модель делает перед финальным ответом.


🔍 Что реально происходит:

• Модели не могут вывести все шаги, если дисков слишком много
• При >13 дисках они просто пишут что-то вроде:
> *"Из-за большого количества шагов я опишу метод, а не приведу все 32 767 действий..."*

• Некоторые модели (например, Sonnet) перестают "думать" уже после 7 дисков — они просто описывают алгоритм и переходят к финальному ответу без вычислений

🎲 А теперь представим, что модель угадывает каждый шаг с точностью 99.99%
На задаче с 15 дисками (32767 ходов) ошибка почти неизбежна — чистая математика:
даже 0.01% ошибок на токенах *экспоненциально* накапливаются

🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔

📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf

@data_analysis_ml

#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/opendatascience/2343
Create:
Last Update:

🍏Иллюзия мышления: понимание сильных и слабых сторон моделей рассуждения через призму сложности задач

Apple внезапно опубликовала исследование, которое разоблачает популярные LLM с "цепочкой размышлений" (Chain-of-Thought) — такие как Gemini 2.5 Pro, OpenAI o3 и DeepSeek R1.

📌 Что тестировали?
Логические задачи:
• башни Ханоя (100+ шагов!)
• загадка про волка, козу и капусту
• головоломки с правилами и условиями

И всё это — с усложнением.

💥 Результаты:

🔁 Модели не думают, а вспоминают
Они не решают задачу шаг за шагом, а ищут похожие примеры в своей базе знаний. Это имитация мышления, а не само мышление.

🤯 "Переосмысление" вредит
Если задача простая, модель находит верный ответ — и… продолжает «думать» дальше, усложняя всё и случайно портя решение.

🧠 Больше размышлений ≠ лучше результат
Дать больше токенов и времени на размышления не помогает. На сложных задачах модели просто сдаются быстрее. Даже "бесконечный" бюджет не спасает.

🧪 Few-shot примеры не работают
Даже если расписать пошаговое решение и дать примеры — модель всё равно ломается, если задача ей незнакома.

🏗 Модели обожают Ханой, но ненавидят загадки
Башни Ханоя решаются идеально даже на 100+ шагов.
А вот в простой задаче с козой и капустой — модели сдаются на 4-м шаге. Почему? Ханой — в датасетах, загадки про реку — нет.

🧠 Почему LLM не справляются с Ханойскими башнаями при большом числе дисков

Модели вроде Sonnet 3.7, DeepSeek R1 и o3-mini не могут правильно решать башни Ханоя, если дисков больше 13 — и вот почему:

📏 Немного математики:

• Чтобы решить башни Ханоя, нужно минимум 2ⁿ − 1 ходов
• Один ход — это примерно 10 токенов (формат: «переместить диск X с A на B»)
• А значит, для 15 дисков нужно ~**327,670 токенов** только на вывод шагов


🧱 Лимиты моделей:

| Модель | Лимит токенов | Макс. число дисков (без размышлений) |
|--------------|----------------|---------------------------------------|
| DeepSeek R1 | 64k | 12
| o3-mini | 100k | 13
| Sonnet 3.7 | 128k | 13

И это без учёта reasoning (внутренних размышлений), которые модель делает перед финальным ответом.


🔍 Что реально происходит:

• Модели не могут вывести все шаги, если дисков слишком много
• При >13 дисках они просто пишут что-то вроде:
> *"Из-за большого количества шагов я опишу метод, а не приведу все 32 767 действий..."*

• Некоторые модели (например, Sonnet) перестают "думать" уже после 7 дисков — они просто описывают алгоритм и переходят к финальному ответу без вычислений

🎲 А теперь представим, что модель угадывает каждый шаг с точностью 99.99%
На задаче с 15 дисками (32767 ходов) ошибка почти неизбежна — чистая математика:
даже 0.01% ошибок на токенах *экспоненциально* накапливаются

🍏 Интересно, что Apple выпустила это исследование за день до WWDC 2025.
Подколка конкурентам? А завтра, может, и своё покажут. 🤔

📎 Исследование: https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf

@data_analysis_ml

#AI #LLM #AGI #Apple #WWDC2025 #PromptEngineering #NeuralNetworks

BY Data Science by ODS.ai 🦜













Share with your friend now:
tg-me.com/opendatascience/2343

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Data Science by ODS ai 🦜 from us


Telegram Data Science by ODS.ai 🦜
FROM USA